skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Herman, Zach"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. When mobile apps are used extensively in our daily lives, their responsiveness has become an important factor that can negatively impact the user experience. The long response time of a mobile app can be caused by a variety of reasons, including soft hang bugs or prolonged user interface APIs (UI-APIs). While hang bugs have been researched extensively before, our investigation on UI-APIs in today’s mobile OS finds that the recursive construction of UI view hierarchy often can be time-consuming, due to the complexity of today’s UI views. To accelerate UI processing, such complex views can be pre-processed and cached before the user even visits them. However, pre-caching every view in a mobile app is infeasible due to the incurred overheads on time, energy, and cache space. In this paper, we propose MAPP, a framework for Mobile App Predictive Pre-caching. MAPP has two main modules, 1) UI view prediction based on deep learning and 2) UI-API pre-caching, which coordinate to improve the responsiveness of mobile apps. MAPP adopts a per-user and per-app prediction model that is tailored based on the analysis of collected user traces, such as location, time, or the sequence of previously visited views. A dynamic feature ranking and model selection algorithm is designed to judiciously filter out less relevant features for improving the prediction accuracy with less computation overhead. MAPP is evaluated with 61 real-world traces from 18 volunteers over 30 days to show that it can shorten the response time of mobile apps by 59.84% on average with an average cache hit rate of 92.55%. 
    more » « less
    Free, publicly-accessible full text available July 2, 2026